
Journal of Engineering Physics and Thermophysics, Vol. 72, No. 4, 1999 

C O N J U G A T E  P R O B L E M S  O F  U N S T E A D Y  H E A T  A N D  

M A S S  C O N D U C T I O N  U N D E R  V A R Y I N G  E X T E R N A L  
C O N D I T I O N S  

A. I. Nakorchevskii UDC 536.21+542.61 

A closed system of algebraic and ordinary differential equations that enables one to simply and with a high 

degree of accuracy solve unsteady problems of heat conduction and diffusion extraction of a substance from 

solids of standard shapes - a plate, a cylinder, and a sphere - under varying external conditions is 

proposed. The method of solution is based on a unified universal dependence that describes with a high 

degree of accuracy the distribution of temperatures or concentrations of the substance in the above solids 

and on equations that determine variations in characteristics involved in this dependence with time and 

space as the solids move. 

1. The problems of unsteady heat and mass conduction in a plate, a cylinder, and a sphere are among 

classical problems of mathematical physics, and widely known methods of solving them are presented in numerous 

monographs, handbooks, and textbooks. The solutions of these problems amount to infinite series with a very 

cumbersome structure of each term and with complex algorithms for finding the coefficients of the series. And this 

presents certain difficulties both in solution and physical interpretation of the relations. Furthermore, external and 

boundary conditions are taken to be constant or vary in accordance with the simplest strictly specified laws whose 

number is no greater than four. Although formally classical solutions refer to exact solutions, they are all 

indiscriminately realized as approximate solutions. In this connection, it is logical to seek less cumbersome 

approximations, however, of a sufficient degree of accuracy, especially as far as the rigor of satisfying the boundary 

conditions is concerned. The possibility of this approximation existing is predetermined by parameter distributions 

inside the enumerated solids. These distributions are continuous, smooth, symmetric, and monotonic in the 

segments [0, Z ]. As in classical methods, we will seek a solution in the form of a power series, the latter, however, 

in the form of an interpolation rather than an extrapolation polynomial, which will enable us to substantially limit 

the number of terms of the series. This approach was successfully used to solve complex aerohydrodynamical 
problems [1, 2]. 

2. Classical diffusion problems in a spatially one-dimensional statement are reduced to solving the equation 

- O T  

d--~-T=adt z = + ( 1 ) 

for a plate (i= 1), a cylinder (i = 2), and a sphere (i = 3). The left-hand side of (1) here is written as the substantial 
derivative 

dT OT OT 
--- + v - z = , ,  ( 2 )  dt Ot tsy 

where v is the velocity of motion of the solid in the direction y. Out of the two forms of the right-hand side of (2), 

use is usually made of one form. They can be mutually transformed. In the vicinity of the line (point) of symmetry, 

according to the l'Ho~pital rule, Eq. (I) takes the form 

Institute of Technical Thermal Physics, National Academy of Sciences of Ukraine, Kiev. Translated from 
Inzhenerno-Fizicheskii Zhurnal,  Vol. 72, No. 4, pp. 782-791, July-August, 1999. Original article submitted June 9, 
1998. 

1062-0125/99/7204-0755522.00 �9 1999 Kluwer Academic~Plenum Publishers 755 



lim d____TT = ia 
z--,O dt  [a z  2 ) 

(3) 

Then,  for  all i, according to (1) and (3), we obtain 

03T] 
j )  ~ --~ (4) 

For the bounda ry  conditions of the third kind, the parameters  on the line (at the point) of symmet ry  and at the 

boundary  of the solid will be: 

OT 1 03T1 
z = O :  T I = T I o  , - 0 ,  - - - ~ = 0 ;  

Oz Oz 

OT 1 ct 2 
z = Z: T 1 - T 1S, Oz - ~ ( T 2 0 -  T2S) '  

(5) 

where T10, T1S , and T2S are the sought functions. 

Let us represent  T 1 in the form of a four-power interpolation polynomial with the variable z: 

4 
TI = E ak zk , 

k=0 
(6) 

where,  according to (5), expressions for the coefficients a k are as follows: 

a o = TlO, 

a 1 = 0 ,  

_ 1  
a 2 = Z2 [2 (TIo - TIS ) - 0.5 Bi (T2s  - T20)],  

a 3 = 0 ,  (7) 

1 
a 4 = --~ [(T10 - TIS  ) - 0.5 Bi (T2s - T20)],  

Z '  

a2Z  
Bi = --2-]- 1 . 

It is easy to t ransform dependence  (6) to the formula of the excess temperature distr ibution in the solid 

T1 - T I S  - (1 - r /2 )  2 + 0 . 5 A ( 1  --r] 2) r/2 
T I O -  T1S 

where 

z T 2 S -  T20 
r / = ~ ;  A = B i  

TIO - T1S" 

(8) 

(9) 
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The parameter A is the ratio of the gradient T1 on the solid surface to the average gradient T 1 in the solid. At the 
beginning and in the end of the process when TI0 = TIS the parameter A tends to increase without limit (A --- 0o). 

By testing (8) for an ex t remum it is established that this formula can be used when 

A < Acr = 4 ,  (10) 

while, for A -- Act, formula (8) itself takes the form 

" / 4 _ ~ A c r .  (11) T1 - TlS = 1 - ~  = 1 

T10 -- T1S cr 

Therefore when A > Acr there  is a smooth transition in the formula 

. A ( 1 2 )  TI -- TIs  - 1 - ~  , 
Tlo - T1S 

that  satisfies the axial and  boundary  conditions (5) when A _> Acr. 
Thus, we obtained the simple unified universal one-parametric dependences (8), (9), and (12) that  describe 

the distributions of T1 in a plate, a cylinder, and a sphere. 

3. Conditions (5) predetermine a priori the high accuracy of distr ibutions (8) and (12). To be more 

convincing, we present below comparison of the calculations by formulas (8) and  (12) with classical calculations 

based on the Fourier series and  the Bessel functions. The data given in the handbook  [3 ] at pp. 137-148, retaining 

the main notation adopted in this publication, are taken as basic data. The basic dependence (2.40) [3 ] has the 

form 

T 1 -- T 2 
T01 _ r z  - A V " exp ( -  F,Z.Vo), (13) 

n = l  

where T01 is the value of Tl at the initial instant while ~ - 7/. According to (13). the transition to excess distr ibution 

of Tl (as the left-hand sides of (8) and (12)) will be 

2 
A (fln) U ~ n  " ~) exp ( -  ktnFo) - ~ A (~n) U (,Un " 1) exp(-/~2nFo) 

TI -- TIS _ n = l  n=l , (14) 
- 2 2 

TI0 TIS ~ A ~ n )  U ~ n "  O) e x p ( - / z n F o  ) -  ~,  AOXn) uQz  n .  1 ) e x p ( - k t n F o )  
n = l  n = l  

while the parameter A in accordance with (9) will be determined as 

A = B i  oo 

2 
A (u.)  U (~n " l) exp ( -  pnFo) 

.=l (15) 

2 2 
AOtn) U ~ n '  0) e x p ( - P n F o ) -  ~] A ~ n )  U ~ n "  1) e x p ( - / ~ n F o )  

n = l  n = l  

Here we set 

T2S = TIS (16) 

(the condition Tzs r T1S is considered below when the dependences are ex tended  to the case of diffusion of a 

substance from capillary-porous bodies). According to the recommendations of [3 ], for Fo ___ 0.3, it is allowable to 

use only the first term of series (13). In this case, (14) and (15) are somewhat simplified: 
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TABLE 1. Comparison of the Distributions of Dimensionless Temperatures according to [3 ] (T) and by the Method 

Proposed (Tin) in a Plate 

Parameters 0 . 1  

T 0.9900 
Tm 0.9900 

Tm/T 1.0000 

T 0.9899 
Tm 0.9899 

Tm/T 0.9999 

T 0.9894 
Tm 0.9894 

Tm/T 1.0000 

T 0.9881 
Tm 0.9883 

Tm/T 1.0002 

T 0.9877 
Tm 0.9880 

Tm/T 1.0003 

Parameters for different 

I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
0.9600 0.9099 0.8399 0.7499 0.6398 0.5098 0.3598 0.1899 
0.9599 0.9098 0.8396 0.7494 0.6393 0.5092 0.3593 0.1895 
0.9999 0.9998 0.9996 0.9994 0.9992 0.9989 0.9986 0.9982 

0.9597 0.9093 0.8389 0.7485 0.6381 0.5080 0.3581 0.1888 
0.9595 0.9089 0.8382 0.7475 0.6369 0.5067 0.3569 0.1880 
0.9998 0.9995 0.9992 0.9987 0.9981 0.9975 0.9967 0.9958 

0.9575 0.9048 0.8314 0.7381 0.6254 0.4942 0.3455" 0.1803 
0.9575 0.9046 0.8312 0.7377 0.6249 0.4937 0.3449 0.1799 
0.9999 0.9999 0.9997 0.9996 0.9993 0.9989 0.9984 0.9977 

0.9528 0.8946 0.8149 0.7152 0.5975 0.4644 0.3184 0.1625 
0.9535 0.8962 0.8174 0.7185 0.6012 0.4680 0.3212 0.1641 
1.0008 1.0018 1.0031 1.0046 1.0062 1.0078 1.0091 1.0098 

0.9513 0.8914 0.8097 0.7080 0.5889 0.4552 0.3101 0.1571 
0.9522 0.8935 0.8129 0.7121 0.5935 0.4595 0.3135 0.1589 
1.0010 1.0023 1.0039 1.0058 1.0077 1.0096 1.0109 1.0114 

TABLE 2. Comparison of the Distribution 

Proposed (T m) in a Sphere 

of Dimensionless Temperatures according to 

Bi A 

0.01 1.9940 

0.10 1.9735 

1.0 1.8692 

10.0 1.6636 

100.0 1.5962 

[3 1 (T) and by the Method 

Parameters 
0.1 

T 0.9900 
Tm 0.9900 

Tm/T 1.0000 

T 0.9899 
Tm 0.9898 

Tm/T 0.9999 

T 0.9887 
Tm 0.9888 

Tm/T 1.0001 

T 0.9851 
Tm 0.9860 

Tm/T 1.0009 

T 0.9838 
Tm 0.9852 

Tm/T 1.0014 

0.2 
I 0.9599 

0.9599 
1.0000 

0.9594 
0.9592 
0.9998 

0.9550 
0.9553 
1.0004 

0.9410 
0.9444 
1.0036 

0.9361 
0.9412 
1.0054 

Parameters for different 
0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.9099 0.8398 0.7497 0.6397 0.5096 0.3597 0.1898 
0.9098 0.8397 0.7496 0.6395 0.5095 0.3595 0.1897 
1.0000 0.9999 0.9999 0.9998 0.9998 0.9997 0.9996 

0.9088 
0.9083 
0.9994 

0.8993 
0.9000 
1.0008 

0.8380 0.7472 0.6366 0.5063 0.3566 
0.8372 0.7461 0.6352 0.5048 0.3552 
0.9990 0.9984 0.9977 0.9969 0.9960 

0.8225 0.7257 0.6103 0.4780 0.3308 
0.8236 0.7271 0.6118 0.4794 0.3318 
1.0013 1.0019 1.0025 1.0029 1.0031 

0.1877 
0.1868 
0.9949 

0.1707 
0.1712 
1.0028 

0.8698 0.7750 0.6610 0.5331 0.3971 0.2591 0.1249 
0.8766 0.7853 0.6736 0.5462 0.4082 0.2662 0.1273 
1.0078 1.0132 1.0191 1.0245 1.0280 1.0274 1.0196 

0.8597 
0.8699 
1.0119 

0.7588 0.6393 0.5077 0.3711 0.2366 
0.7742 0.6582 0.5272 0.3876 0.2472 
1.0202 1.0296 1.0384 1.0447 1.0448 

0.1110 
0.1146 
1.0332 

Bi A 

0.01 1.9960 

0.10 1.9580 

1.0 1.7554 

10.0 1.1854 

101.0 1.0207 
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TABLE 3. Comparison of the Distributions of Dimensionless Temperatures according to [3 ] (T} and by the Method 
Proposed (Tin) in a Cylinder 

Para- Values ofparameters 
meters 

0.9056 0.6792 0.4528 0.2264 0.0000 0.0000 0.0000 0.0000 
T 0.1801 0.5362 0.7930 0.9482 0.0000 0.0000 0.0000 0.0000 

Tm 0.1792 0.5374 0.9741 0.9485 0.0000 0.0000 0.0000 0.0000 
Tm/T 0.9946 1.0022 1.0015 1.0003 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 
0.0000 0.0000 
0.0000 0.0000 
0.0000 0.0000 

0.9556 0.7963 0.6370 0.4778 0.3185 0.1593 0.0000 0.0000 0.0000 0.0000 
T 0.0792 0.3427 0.5697 0.7536 0.8891 0.9720 0.0000 0.0000 0.0000 0.0000 

Tm 0.0783 0.3408 0.5681 0.7526 0.8887 0.9720 0.0000 0.0000 0.0000 0.0000 
Tm/T 0.9883 0.9945 0.9971 0.9987 0.9995 1.0000 0.0000 0.0000 0.0000 0.0000 

0.9176 0.8259 0.7341 0.6423 0.5506 0.4588 0.3671 0.2753 0.1853 0.0918 
T 0.1166 0.2487 0.3801 0.5070 0.6256 0.7327 0.8250 0.8998 0.9549 0.9886 

Tm 0.1173 0.2517 0.3852 0.5134 0.6323 0.7387 0.8297 0.9028 0.9564 0.9890 
Tm/T 1.0064 1.0119 1.0134 1.0125 1.0107 1.0082 1.0056 1.0033 1.0015 1.0004 

0.8400 0.7560 0.6720 0.5880 0.5040 0.4200 0.3360 0.2520 0.1680 0.0840 
T 0.2141 0.3316 0.4485 0.5614 0.6669 0.7622 0.8444 0,9109 0.9599 0.9899 

Tm 0.2176 0.3380 0.4569 0.5707 0.6760 0.7699 0.8501 0.9145 0.9616 0.9904 
Tm/T 1.0166 1.0190 1.0187 1.0165 1.0135 1.0101 1.0068 1.0040 1.0018 1.0005 

Bi A 

0.10 1.9898 

1.0 1.7834 

10.0 1.3891 

100.0, 1.2610 

m 

T I 0 -  TIS V(ill " 0) -- V(ill " 1) '  
(17) 

v (~l  " 1) 

A = Bi U ( i l l  " 0 )  - -  U ( , t / l  " 1) " ( 1 8 )  

Consequently, out of the two parameters Fo and Bi, only the latter, whose real variation region according to the 
data of [3] is Bi = 10-2-102, is left in (17) and (18). 

Comparison of the classical and proposed distributions of TI is presented in Tables 1-3 for five Biot 
numbers: 10 -2, 10 -1, 10 ~ 101, and 102 and for ~ - 0 .1-0.9 in 0.1. The use of the tabulated Bessel functions 

(Tables 2.11 and 2.13 in [3 ]) as basic values brought about the necessity to calculate ~ from them and to eliminate 

the case Bi - 10 -2 in calculating the distributions of T1 in a cylinder. The functions calculated by (14) and (17) 

are denoted by T, while the functions calculated by (8) and (12) are denoted by Tin. The ratios Trn/T are also 

presented. 

The values of T, Tin, and Tm/T in Tables 1-3, in which data for Fo >__ 0.3 are presented, need no discussion. 
Only a very narrow region of possible values of parameter A - from 1.021 to 1.996 - in classical solutions (Table 

2) is noteworthy. In other words, classical solutions reflect a very "weak" external action on the object. An increase 

in parameter A is possible in classical solutions only when Fo < 0.3 and hence makes us use formulas (14) and 

(15) when n >> 1. In this case we should take into account that the condition Fo --- 0 requires n --, oo be satisfied. 

In the method proposed, there are no similar difficulties. 

4. In comparing the energy balance relations, we need data on the average temperatures of the solids that 

are calculated according to the formula 
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1 
TI = i f  T 1 r/t-ldr/ (i = 1, 2, 3) .  (19) 

0 

Substitution of dis tr ibut ions (12) and (8) into (19) results in: 

^ AT1~ + iT1s (20) 
when A > Acr T 1 - A + i ' 

^ 

T 1 - TIS 
when A < Acr - b 0 + b l A ,  

- TI o - T1S 
(21) 

where b 0 and b 1 are,  respectively, 0.533 and  0.067 for i -- 1, 0.333 and 0.083 for i = 2, and 0.229 and  0.086 for i 

= 3 .  

Problems when the external heat  t r ans fe r  agent is a mobile medium, whose average t empera tu re  differs 

little from T20, are the  most  frequent. T h e r e f o r e  below we assume 

T2 = T20. (22) 

5. As a result  of establishing relat ions (8), (9), (12), (16~, and ( 2 0 ) - ~ 2 )  the solution of the problem 

amounts  to finding t ime and  space variations in four functions T10, T1, T1S, and T2. Let us real ize this part of the 

problem, using the following equations (in the  form for the latter case). 

a) Equa t ion  o f  a variation in TIO that  is de termined by f o rmu la  (3).  According to (12), when  A > Acr, we 

have (A > 4): 

2Tl] = lim - (T10 - T1S ) A (A - 1) r]A-21 = 0 .  (23) 

Thus,  when A > Acr 

dT1 o 
dt  = 0 ,  (24) 

which is quite explainable  physically, since the  temperature profile is very "filled" when A > Acr and  this h inders  

diffusion of the heat  f rom central regions of the solid. According to (3) and (8), when A _< Acr, we have 

dT10 2a 1 _ ^ 
- i ~  [ 2 ( T 1 0 -  T I S  ) - 0 . 5 B i ( T l s  T2)] ( i =  1 2, 3) (25) 

~ Z  2 ' . dy 

A 

If, as in classical problems,  we set T 2 = const  and  assume a linear relationship between T 1S and  r l 0  the solution 

of (25) will yield the known exponential law of a variation in T10. 

b) Heat -ba lance  equat ion 

d ^ --" ^ (26) 
~yy (91%1  T1 + G2 Cp2 T2) = 0 .  

- - >  

Here Gk (k = 1, 2) is in te rpre ted  as a vector whose positive direction coincides with the'positive direct ion of y. Then  

(26) corresponds both  to direct-flow and counterf low schemes of the interaction of phases. Equat ion  (26) yields 

the relation 
^ 

^ E (0) - G 1 Col T 1 (27) 
T 2 = ~ , 

G2 cp2 
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where 

E (0) = a I Cpl (0) T 1 (0) + G 2 Cp2 (0) T 2 (0). (28) 

c) Interphase heat transfer equation 

d A A 

d y  (G1 Cpl TI) = a 2 (T2 - TIS ) b12, (29) 

where hi2 is the interface per unit length (height) of the apparatus: 

n, Va 
b12 - Ha 

(30) 

For a weak dependence of cpl on temperature,  according to (29), we have 
/ x  

dT1 a2bl 2 (T2 TI S) 
dy G 1 Cpl 

(31) 

d) Relations (20) and (21) that need to be solved for T1S. When A > Acr it will be 

T1 s = 0.5F1 - x/0-25F2 - F2 , (32) 

where 

A A A ^ A 

Fl = (T10 + T1 ) + Bi Bi ~ - ( T I 0 - -  T l ) ,  F 2 = T10T 1 +- -7 - (T10-  TI) T 2 ( i =  1, 2, 3) .  (33) 

When A < Acr we obtain 

T 1 - boTl0 + b I B iT  2 
T1S= 1 - b  0 + b  IBi  (34) 

The values of b o and  b I correspond to the values adopted in formula (21). 

The sys tem of Eqs. (24) (or (25)), (27), (31), and (32) (or (34)) is closed, and the solution of the Cauchy 

problem enables us to establish variations in the direction of y (or with time) in the four sought functions TlO, 

Tl, T1S, and T2, and  in parameter A. The  Biot numbers are found in simultaneous solution of the hydrodynamica l  

problem. 

6. A change from thermal to diffusion problems of extraction of a substance from porous or capillary-porous 

solids is made by way of replacements: 

T ~ C ,  
a2z 3z z 

a ~ D ,  a 2 ~ f l 2 ,  ---~1 ~ D1 

Gkcok~ Qk (k = 1 ,2 ) .  

(as) 

We should recognize two approaches in determining the concentration C1 and the mass conductivity D1. One 

correlates C1 and  D1 with the entire volume of the solid or, alternatively, with only a porous portion of the solid 

filled with a substance carrier: 

^ I 
B! = -~ f BldV.  (36) 

v 

761 



2i 

4 6 5  / 

, I I 

o o.1 0.2 f~ 
Fig. 1. Variation along the length of a heat exchange r  in the functions: 1) 

Bi-10, 2) A, 3) P2" 10-5, 4) u2f-10 -2  , 5) T1" 10 -2  , 6) T2" 10 -2  . 

In the majority of cases, the pore size is several decimal orders of magni tude  smaller than the solid dimension.  

Then  the porosity can be considered homogeneous and  isotropic 

B 1 = B 1 = const .  (37) 

According to (37), in the (26)- (31)- type  relations, the  replacement 

- .  (38) 

is required. 

The  conceptual advantage of the second approach is that Di turns out to be rigidly bound with the diffusion 

factor of the substance in a medium that fills the pores. Since this factor  is known, as a rule, distorted in terpre ta t ions  

of the values of D1 drop out. A relationship between the quantities at the interface is somewhat more complex.  This 

relationship can be expressed as a first approximation by the relation 

C2 S = ,P21B1sCIs. (39) 

The  coefficient of the equilibrium distribution of the  substance ~P21 is introduced for the cases when  substance 

carriers in the solid and in the external  medium are  dissimilar and  mutually insoluble. If the media  are  similar, 

~P21 = 1. The coefficient B1S reflects an inevitable concentration jump at the boundary  of a porous solid with a 

continuous homogeneous phase. Thus,  in the problems of diffusion extraction in accordance with the above the 

basic parameters can be represented as: 

A --', A*  = Bi* C2S - C2~ 
C10 ClS ' 

Bi ---, Bi* - fl2Z 
B1 sD 1 . (40) 

Relation (39) will also have an effect on (33)- and  (34)-type formulas that must have the form: 

i 

F~ = (C10 + C1) + 
B1 ~P21B1S 

(Clo - C1) ,  

A " A t x  

F 2 =  CloC 1 + B I ( C l o -  C1) C2,  

C1S = 

A . A  

C 1 - boClo + blBi C 2 

1 - b o + blBi*~/21Bis 

(41) 
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~ - ~  

~o-~s 
0.8 

0.6 

0.4 

0.2 

0 O.2 0.4 0.6 O.8 i? 
Fig. 2. Profiles of the excess temperatures:  1) A --, co, 2) 4, 3) O. 

Unlike h e a t p r o b l e m s ,  the solution of the problem of extraction of a substance amoun t s  to finding five 

functions, i.e., Clo, C1, C]S, C2s, and C2 ra the r  than four. The  fifth, closing, relation is (39).  

7. The  example of solving the hea t  problem is presented by a calculation of cont inuous  counterflow air 

cooling of a slowly moving packe to f  steel spheres  (Fig. 1). The  initial conditions for the packet  are: Pl = 7.8- 103 

kg/m3; d 1 = 10 -2  m; 7'I = 0.5; T 1 (0) = 400~ ~ = 10 -2  m / s e c ; S  = 1 m2; 91 = 39 kg / sec ;  b12 = 600 m; Z = 

5-10 -3 m; for the air: h-'zf(0) = - 1 0 0  rn /sec ;  G2 = -29 .13  kg/sec;  T2(0) = 325~ p2(0) = 105 Pa. 

Thermophysical  properties of the steel and the air were approximated by l inear t empera tu re  dependences;  

the air dens i ty  was calculated by the  C lapey ron  equat ion.  Aerodynamic  pa ramete r s  a n d  the heat t ransfer  

coefficients were determined by the procedure  presented in [4 ]. Although the cooling was in essence completed at 

a length of 0.1 m, the temperatures in the body  of the spheres were totally equalized ' (accurate  up to 10 -2 ~ in 

the cross section offset by 0.32 m from the  initial cross section. The  aerodynamic character is t ics  (pressure, velocity 

in narrow cross sections) varied substant ial ly  along the hea t -exchanger  length, which resul ted  in adequate change 

in the Biot number.  A sharp decrease in the  values at the beginning of the heat exchanger  with a tendency toward 

an abrupt increase in the end is character is t ic  of parameter  A. The  steepness of t empe ra tu r e  curves made it 
/ x  

impossible to draw the temperatute  lines T10 and T1S on the plot. The  region of variation in the  ratios T1/T]o was 

bounded below by a value of 0.926 and  by  a value of 0.889 for the ratios T1s/T1o. Figure 2 gives an idea of a 

variation in the excess temperatures.  

The  example of solving the problem of diffusion extract ion is presented by a calculat ion of the aqueous- 

solution extraction of saccharose from beet  chips in a KPA-30 counterflow column diffusion apparatus with a 

capacity of up to 3,000 tons of chips a day  [5 ]. Saccharose in beets  is in i t~ l ly  p resen t  as an  aqueous solution 

( C  1 ( 0 )  = C 1 0  ~- CIS = 220 kg /m 3) that fills up to 90% of the beets volume ( B 1  = 0.9, ~P21 = 1). The  beets are cut 

into long diamond-shaped chips with an equivalent diameter  d l=  3 .10  -3 m (Z = 1.5.10 -3  m,  B1S = 0.9). In the 

column apparatus,  the volumetric rates of the beets and the aqueous solution are magni tudes  of the order Q1 = 

35.10 -3 m3/sec  and Q2 = - 4 5 . 1 0  -3 m3/sec .  For the active height of the apparatus Ha = 13 m and the time of 

stay of the beets in it T = 80 rain; the velocity will be v 1 = 2.71- 10 -3  m/sec .  The specific load of the working volume 

of the apparatus with the chips is 700 k g / m  3. Then  the velocity of extragent  motion is: 

V 2 

- - )  

Q2Ul �9 0.7 

Qt " 0.3 

= -  8 . 1 3 .  10 -3  m / s e c ,  

and the relative phase velocity is u21 = 10.84- 10 -3 m/sec.  The  counting bulk density of cy l inders  more than 1 m 

long is n 1 = 1.11.105 m -3. According to (30), for a useful volume of the apparatus of 208 m 3 we obtain bla = 

1.67.104 m. The  mass conductivity in the solution that fills the chips is taken to be equal to the  factor of saccharose 

diffusion in water  DI ~- 0 .5 .10  -9 m2/sec.  T h e  kinematic viscosity factor of the extragent  is v 2 ~ 0.7- 10 -6  m2/sec. 

We calculate the mass t ransfer  coefficient by  the formula 
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Fig. 3. Variation in the concentrations and in the parame~r  A* on the initial 

segment (a) and along the column height (b): 1) C10, 2) C1, 3) Cls, 4) C2s, 
5) C20 , 6) A*. 

TABLE 4. Comparison of the Thermal Parameters according to [6 ] and by the Method Proposed 

Bi 0 Fo 
1 2 3 4 5 6 10 12 

0.1 

0.4 

Ow 

Oc 

Ow 

Oc 

Source 

t61 
Our data 

[61 
Our data 

[6] 
Our data 

[6] 
Our data 

0.076 

0.076 

0.033 
0.033 

0.257 

0.253 

0.112 

0.115 

0.119 

0.119 

0.085 

0.077 

0.370 

0.367 

0.242 

0.244 

0.160 

0.160 

0.119 

0.119 

0.450 

0.456 

0.348 

0.349 

0.198 

0.197 

0.160 

0.158 

0.525 

0.528 

0.440 

0.434 

0.232 

0.233 

0.198 

0.195 

0.586 

0.587 

0.503 

0.504 

0.268 

0.266 

0.232 

0.230 

0.648 

0.634 

0.560 

0.561 

0.380 

0.380 

0.350 

0.349 

0.750 

0.758 

0.702 

0.709 

0.425 

0.428 

0.402 

0.399 

0.800 

0.795 

0.750 

0.754 

0.33-  0.5 DI 
/32 = 0.8 r r  2 l~e2 --~-I ' 

where Prz = v2/Dl; Re2 = u21dl/v2. For C1 (0) = 220 kg/m 3, C2(0) = 150 kg/m 3. The process of extraction in the 

KDA-30 apparatus is presented in Fig. 3. The region of A < Act is small and is bounded by Ycr = 0.34 m (Fig. 3a), 

and the initially rectangular profile of the excess concentrations on this segment becomes a profile with A* = Acr 

(see Fig. 2 as applied to diffusion extraction). When y > Ycr there occurs a monotonic decrease in five basic 

functions: C10, C1, Cis, C25, and C2, whose values at the outlet from the apparatus correspond to practical data. 

Parameter  A* is characterized by an asymptotic approximation to a value of 1.839 for y -- 4.74 m. (The vertical 

dashed line in Fig. 3a corresponds to Act.) 

As follows from the above examples the method proposed is free of any restrictions on the character of 

space-time variation in the entire set of external and boundary conditions. Known approximate solutions are 

obtained for the cases when only one parameter, for example, the temperature of the external medium, varies 

according to one of the three laws: linear, harmonic, and exponential. Table 4 compares the results of calculations 

by this procedure and on the basis of integral Laplace transforms with the use of variational methods [6 ] for a 

plate with linear variation in the temperature of the external medium. The parameters in Table 4 correspond to 

identically marked parameters of Tables 1-2 of [6 ] and reflect the variations in the dimensionless temperatures 

0 w and 0c, respectively, on the wall and at the center of the plate as functions of the Fourier and Biot numbers. 
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Thus, we can infer that the method proposed for solving unsteady problems of heat and mass conduction 
with varying boundary conditions makes it possible to obtain mathematical relations with a "transparent" physical 

interpretation and simple computational algorithms. 

N O T A T I O N  

ak, polynomial coefficients; a, thermal diffusivity, m2/sec; A and A*, parameters of steepness of the 

temperature and substance distributions in the solid; b 12, interface per unit height of the apparatus, m; cp, specific 
heat, J / ( k g . K ) ;  C, concentration of the substance, kg/m3; d, diameter of the packet element,  m; D, mass 
conductivity, m2/sec; G, mass flow rate, kg/sec; H, height of the apparatus, m; Q, volumetric rate, m3/sec; i, 
natural number (i -- 1 is the plate, i = 2 is the cylinder, and i -- 3 is the sphere); n, counting bulk density of the 
packet elements, m-a;  p, pressure, Pa; S, surface area of the solid, cross-sectional area, m2; t, time, sec; T, 

temperature, ~ u2f, velocity in a narrow cross section of the packet, m/sec; v, velocity, m/sec;  V, volume, m3; 
y, longitudinal coordinate, m; z, coordinate counted from the surface, the line, and the point of symmetry, m; Z, 

characteristic half-dimension of the solid, m; a,  heat-transfer coefficient, W/(m 2- K);fl, mass-transfer coefficient, 
m/see; B, indicator function of the porosity of particles (the analog of the bulk concentration of pores); ~o, porosity 
of the packet; 2, thermal conductivity, W/ (m.  K); ~p, equilibrium coefficient of the substance distribution between 

carriers in phases; p, density, kg/m3; T, time interval, sec. Subscripts and superscripts: 0, value at z = 0 or in the 
volume of phase 2; 1, 2, phases 1 and 2; 1 2, between phases I and 2; (1) unit element; S, at the interface; a, 

apparatus; f, narrow cross section of the packet; , average value; cr, critical; m, model. 
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